Innovation in Motion

Miba Industrial Bearings Tilting Pad Journal Bearings

Content	Page
Miba Industrial Bearings	3
Tilting Pad Journal Bearings	3
Technical Information	4
Lubrication	6
Pivot Design	7
Materials	8
Hydrostatic Jacking	8
Eddy Grooves	9
Dimension Tables: L/D 0.6 (Design Example Germa	any) 10
Dimension Tables: L/D 0.9 (Design Example Germa	any) 11
Performance Charts $L/D = 0.6$	12
Performance Charts $L/D = 0.9$	13
Miba Services	14
Technical Support	14
Engineered Bearings	15
Bearing Repair, Service and Upgrade	16
Instrumentation	17
Simulation & Analysis	18
Miba Quality	19

Miba Industrial Bearings

Miba Industrial Bearings is one of the largest international hydrodynamic bearing supplier for turbomachinery. Our roots date back over 100 years when the German site first started producing bearings. Equipped with this experience we are now a center of excellence in bearing design, repair, troubleshooting and analysis as well as reversed engineering solutions.

The selection of a Miba Industrial bearing offers numerous benefits:

• A worldwide Miba Group with contacts in Europe, Americas and Asia is focused on customer support, competitive lead times and highest product quality

Tilting Pad Journal Bearings

Tilting pad bearings are designed for the most demanding turbomachinery applications, in terms of speed, load and rotordynamics. Due to the tilting capability of the individual pads, this bearing design does not tend to produce self-exited rotor vibrations and is suitable for highest sliding speeds and high bearing loads.

- Decades of technical experience helps us to understand and satisfy the needs of our customers
- Tailored bearings for specific applications, where catalog bearings reach their limits
- Comprehensive technical support, including bearing consultation and detailed calculations
- Up-to-date calculation tools for the prediction of bearing performance and to guarantee long-term operational safety
- Miba's in-house R&D test rig capacity and external research partners, to constantly validated and improve bearing performance

Technical Information

Anti-rotation pin

The anti-rotation pin defines the bearing orientation angle and secures the bearing against rotation. By standard two anti-rotation pin positions are existing, each at an angle of 18° from the bearing split line. For typical load directions from gearings one position leads to a load between pads orientation (LBP) and the other to a load on pad (LOP) orientation. Individual positions of the antirotation pin are possible upon request.

Insulation

All bearings can be insulated by adding special plates, insulation material or coatings, (depending on the application) to isolate electrical current to protect both, the rotor and bearing.

Length-to-diameter ratio (L/D)

The L/D-ratio is the ratio between the axial pad length L and the bore diameter D of a bearing. Miba Industrial Bearings offers two standard ratios, the nominal values are 0.6 and 0.9. For other L/D-ratios, please contact Miba's technical support.

Load direction

There are two main bearing installations:

- Load between pads (LBP) orientation: The load is distributed on two pads. This leads to the highest bearing load capacity.
- Load on pad (LOP) orientation: The load is carried mainly by one pad. For lower bearing loads, this orientation can be beneficial for the rotor dynamic properties.

Operating load

The permissible load depends on the operating conditions and specified limits and can be determined with a bearing calculation.

Pivot position

There are two common pivot positions:

- Center pivot: Pivot at 50% of the circumferential pad length. Bi-directional operation possible.
- 60% offset pivot: A pivot position at 60% of the circumferential pad length is suitable for uni-directional operation. One benefit is the reduced temperature level compared to center pivot. Reverse rotation is still possible at reduced loads.

Preload

The bearing preload is a geometrical value of the bearing. It is based on the bearing bore radius $R_{_{B}}$, the pad radius $R_{_{P}}$ and the journal radius $R_{_{J}}$. The pad radius $R_{_{P}}$ is defined for preload values in the range of 0,25 – 0,5, depending on the journal diameter. This range ensures a low oil consumption in combination with high dynamic damping values. For other preload values, please contact Miba's technical support. The preload m is defined as $m = 1-(C_{_{R}}/(R_{_{P}}-R_{_{J}}))$ with the radial bearing clearance $C_{_{R}} = R_{_{P}}-R_{_{J}}$.

Sliding (circumferential) speed

The sliding or circumferential speed v [m/s] is defined by v=n*d* π /60000 with n = rotor speed [rpm], d=rotor diameter [mm].

Slow roll / turning gear operation

Depending on the individual operating conditions of a machine, Miba can specify a minimum slow-roll or turning gear speed to avoid wear. For lower speeds, a hydrostatic jacking device is recommended.

Specific bearing load

The specific bearing load \bar{p} [MPa] is defined by \bar{p} =F/(D*L) with F = bearing load [N], D = bearing bore diameter [mm], L = axial pad length [mm]. Permissible bearing loads can be stated for the machine start-stop and during operation.

Start-up load

The maximum start-up load is 2,0 MPa for load between pads orientation and 1,5 MPa for load on pad orientation. For higher start-up loads Miba recommends a hydrostatic jacking device.

Start-up temperature

Miba recommends a minimum oil inlet temperature at the machine start-up of 20 °C. For lower temperatures a tank heating is recommended.

Temperature limits

Miba recommends a temperature limit based on the bearing calculation. E.g. the alarm temperature could be set 10 °C above the prediction and the shut-down temperature 15 °C above the prediction. The absolute limits for the bearing are typically higher.

Lubrication

The various Miba bearing models contain two main types of oil supply:

Directed lubrication:

Oil inlet nozzles control the flow. Directed lubrication reduces the power loss and leads to lower pad temperatures. The end plate design is open (non-sealing) for the cavity evacuation. As an addition, if requested, direct lubrication with a pad oil distribution feature at the pad inlet can be provided.

Flooded lubrication:

- Option 1: Equipped with lateral floating seals, rate of oil flow controlled by outlet orifices.
- Option 2: Laterally sealed by throttle rings with a defined gap to the shaft. Oil flow control by inlet nozzles.

Directed lubrication

Pivot Design

Miba bearings are available with different pivot designs:

Line contact:

The line contact is the most frequently chosen design, suitable for the majority of applications.

Spherical contact:

Spherical contact (e.g. Ball & Socket) allows pad tilting also in axial direction, to cope with misalignment and thereby avoid edge contact.

Working principle:

Pivot design comparison

Materials

Steel – White metal

16MnCr5 steel with a high-quality white metal is the standard material combination for the tilting pads.

The material combination offers a high bonding strength (according to ISO 4186-2 / Chalmers Test) and mechanical properties which clearly exceed the demand of even highly loaded bearings.

Steel – Bronze

The higher temperature limit of bronze allows increased pad temperatures for special applications. A hardened shaft is recommended (HB > 160).

CuCr – White metal

For the reduction of maximum bearing temperatures under extreme conditions, Miba Industrial Bearings offer CuCr pad base material with a 6x higher thermal conductivity than steel. The effect is depicted in the chart.

Eddy Grooves

For reducing maximum bearing temperatures, Miba Experimental results show a considerable reduction of developed the patent pending eddy grooves. The grooves the maximum bearing temperatures, depending on the create radial flow components in the fluid film at the high bearing load. load area of the bearing, where normally full laminar flow exists.

These flow components act as an increase of the lubricants' thermal conductivity and thereby improve the heat exchange between cooler lubricant near the shaft and warmer lubricant near the bearing surface.

25 T_{Surface_Temperature_Reduction} T75%_Std._Depth_Temperature_Reducti erature reduction [K] 12 o To 10 Eddy Groo 0,5 1,5 2,5 1 2 Specific bearing load [MPa]

Measured reduction of maximum bearing surface temperature (yellow) and for the standard 75% temperature sensor, 1 mm below the white metal (blue), including the standard deviation (grey)

Hydrostatic Jacking

For start-up loads above 1,5 – 2,0 MPa or continuous slow-roll / turning gear operation. Miba Industrial Bearings can be equipped with oil pockets, check valves, pipes and hoses to connect a high-pressure lift oil system. This feature is available for tilting pad journal bearings with bore diameter >= 100 mm.

Tilting pad equipped with eddy grooves

Dimension Tables: L/D 0.6 (Design Example Germany)

Standard A6 B/D 0,6 3 nozzles per pad gap, starting at a bearing bore of 90 \emptyset 5 nozzles per pad gap, starting at a bearing bore of 250 \emptyset

Dimens	sion ⁻	Гаb	les:
L/D 0.9	(Desig	n Ex	ample

L/D ().6 Exa	mple	Germa	ny								L/D C).6 Exa	mple	Germa	ny							
D	в	d1*	d1**	d2*	d3	d4	11	12	13	14	t	D	в	d1'	d1**	d2*	d3	d4	11	12	13	14	t
30	18	85	69	64	30	4	36.2	40	8	11.0	5	120	75	230	-	204	120	8	105.2	105	34	32.5	9
35	22	85	76	64	35	4	40.2	40	8	11.0	5	125	80	230	215	204	125	8	110.2	105	34	32.5	9
40	25	110	82	88	40	5	47.2	50	10	14.0	6	130	85	230	-	204	130	8	113.2	105	35	32.5	9
45	25	110	89	88	45	5	47.2	50	10	14.0	6	140	90	230	228	204	140	8	123.2	105	35	32.5	9
50	30	110	95	88	50	5	52.2	50	10	14.0	6	150	95	280	-	240	150	8	129.2	110	35	37.5	9
55	30	110	111	95	55	5	52.2	50	10	14.0	6	160	100	280	266	240	160	8	134.2	115	42	37.5	9
60	35	110	120	95	60	5	57.2	50	10	14.0	6	170	115	315	-	265	170	8	145.2	125	42	37.5	9
65	40	160	-	133	65	6	64.2	60	16	21.0	7	180	115	315	298	265	180	8	145.2	125	42	37.5	9
70	40	160	130	133	70	6	64.2	70	16	21.0	7	200	120	350	336	285	200	8	160.2	130	42	37.5	9
75	45	160	-	133	75	6	69.2	70	16	21.0	7	225	135	425	374	320	225	10	180.3	145	45	42.5	11
80	45	160	139	133	80	6	69.2	70	16	21.0	7	250	150	475	406	355	250	10	200.3	160	50	45.0	11
85	50	160	-	133	85	6	69.2	70	16	21.0	7	280	165	500	450	400	280	12	221.3	175	60	54.0	13
90	55	160	165	133	90	6	79.2	70	30	21.0	7	300	180	515	482	425	300	12	240.3	190	65	56.5	13
95	55	200	-	175	95	6	85.2	80	32	28.0	7	315	190	580	-	450	315	12	253.3	200	65	56.5	13
100	60	200	177	175	100	6	90.2	90	32	28.0	7												
105	60	200	-	175	105	6	90.2	90	32	28.0	7												
110	65	200	190	175	110	6	95.2	90	34	28.0	7												
115	70	200	-	175	115	6	100.2	95	34	28.0	7	*Desig **Des	gn: line ign: lin	and sp e conta	oherical act; alte	contac ernative	et e OD						

L/D ().9 Exa	mple	Germa	ny								L/D ().9 Exa	mple	Germa	ny							
D	в	d1'	d1"	d2*	d3	d4	11	12	13	14	t	D	в	d1*	d1**	d2*	d3	d4	11	12	13	14	t
30	28	85	69	64	30	4	46.2	40	8	11.0	5	120	110	230	-	204	120	8	140.2	118	34	32.5	9
35	32	85	76	64	35	4	50.2	40	8	11.0	5	125	110	230	215	204	125	8	140.2	118	34	32.5	9
40	36	110	82	88	40	5	58.2	50	10	14.0	6	130	117	230	-	204	130	8	147.2	125	35	32.5	9
45	40	110	89	88	45	5	62.2	50	10	14.0	6	140	125	230	228	204	140	8	158.2	133	35	32.5	9
50	45	110	95	88	50	5	67.2	52	10	14.0	6	150	135	280	-	240	130	8	169.2	143	35	37.5	9
55	50	110	111	95	55	5	72.2	57	20	14.0	6	160	140	280	266	240	160	8	174.2	148	42	37.5	9
60	56	110	120	95	60	5	78.2	63	20	14.0	6	170	160	315	-	265	170	8	190.2	168	42	37.5	9
65	60	160	-	133	65	6	84.2	68	25	21.0	7	180	160	315	298	265	180	8	190.2	168	42	37.5	9
70	63	160	130	133	70	6	87.2	71	31	21.0	7	200	180	350	336	285	200	8	220.2	190	42	37.5	9
75	67	160	-	133	75	6	91.2	75	30	21.0	7	225	200	425	374	320	225	10	245.3	212	45	42.5	11
80	71	160	139	133	80	6	95.2	79	30	21.0	7	250	225	475	406	355	250	10	275.3	237	50	45.0	11
85	77	160	-	133	85	6	101.2	85	30	21.0	7	280	250	500	450	400	280	12	306.3	262	60	54.0	13
90	80	160	165	133	90	6	104.2	88	30	21.0	7	300	270	515	482	425	300	12	330.3	282	65	56.5	13
95	85	200	-	175	95	6	115.2	93	32	28.0	7	315	280	580	-	450	315	12	343.3	292	65	56.5	13
100	90	200	177	175	100	6	120.2	98	32	28.0	7												
105	95	200	-	175	105	6	125.2	103	32	28.0	7												
110	100	200	190	175	110	6	130.2	108	34	28.0	7												
115	105	200	-	175	115	6	136.2	113	34	28.0	7	*Desig **Des	gn: line sign: lin	and sp e cont	oherica act; alte	l conta ernative	ct e OD						

e Germany)

**Design: line contact; alternative OD

Performance Charts L/D = 0.6

Power loss / Oil supply charts:

- Calculation based on DIN 31657; Oil type: VG32 @ 50 °C; directed lubrication; Center pivot; ΔT ≈ 21 K.
- Offset pivot pads show reduced temperatures with an approximately 15% increased rate of oil flow.
- For ISO VG 46 power loss and oil flow are approximately 20% higher.
- Calculations for divergent parameters on request.

Power loss 5-tilting pad journal bearing - Directed Lubrication Design, L/D = 0.6

Oil supply 5-tilting pad journal bearing - Directed Lubrication Design, L/D = 0.6

Performance Charts L/D = 0.9

Power loss / Oil supply charts:

- Calculation based on DIN 31657; Oil type: VG32 @ 50 °C; directed lubrication; Center pivot; $\Delta T \approx 21$ K.
- Offset pivot pads show reduced temperatures with an approximately 15% increased rate of oil flow.
- For ISO VG 46 power loss and oil flow are approximately 20% higher.
- Calculations for divergent parameters on request.

Power loss 5-tilting pad journal bearing - Directed Lubrication Design L/D = 0.9

Oil supply 5-tilting pad journal bearing - Directed Lubrication Design, L/D = 0.9

Shaft speed [krpm]

Miba Services

Miba's technical support provides customer consultation, bearing calculations and engineering assistance. Providing excellent customer support and quick help when our customers need us most. A Miba bearing calculation contains comprehensive information and indicates the operational safety of the bearing under the given conditions.

KSR-DIN - PROGRAMM DER MIBA I © Uwe Klein 2019 - Berechnungsverfahren i	NDUSTRIAL Programm n Anlehnu	BEARINGS GERMANY Gm -Version 2.4 ng an DIN 31657
TILTING PAD JOURNAL ION	BEAR	ING CALCUL
Kunde/Customer:		Miba Industrial
Abteilung/Department:		Engineering
Referenz/Reference: Anfrage-Datum/Date of enguiry:		Example 23.09.2020
MIBA-Info:		Case 1
Zeichnungs-Nr./Drawing-No.:		A6-Standard
Lagertyp/Bearing type:		_K_T A6 60/110x78.2
Bearbeiter/Author:		Miba Technical Supp
 Bore type/Load direction		5 x 52. deg/ between
pads Tilting point		contor
Bearing diameter	[mm]	60.000 H6
Width of pads	[mm]	56.000
Snatt diameter Mean bearing clearance (cold/warm)	[mm]	59.800 N5 0.156 / 0.133
Mean relative clearance (cold/warm)	[â]	2.600 / 2.218
Pad diameter Preload value	[mm] [-]	60.080 0.311
 Speed	[DDM]	29650 0
Sliding-speed	[m/s]	90.0
Load	[N]	6720.0
Specific load	[MPa]	2.00
Oil type		ISO VG 32
Rate of oil flow Oil pressure	[l/min] [bar]	21.2
Oil supply temperature	[∞C]	45.0
Oil temperature raise Max. oil film temperature (DIN31657	[∞C] [∞C]	21.0 93.1
Power loss	[kW]	12.30
Minimum/Permissible film thickness	[mm]	0.028 / 0.023
Stiffness and damping coefficients: 5 Cxx	[N/mm]	195123
ΣCxy	[N/mm]	0
∑ Cyx	[N/mm]	0
5 Cuu	[Ns/mm]	63.4
Σ Cyy Σ Dxx	11137 1001	

Calculation Example

Engineered Bearings

Miba Industrial Bearings always had and still has its focus on customized bearing solutions. No matter whether you need individual bearing dimensions, requirements for bearing adjustments or a tailored combined journal and thrust bearing, our technical department can assist you to reach the best solution for your application. Please contact us for information and consultation.

Examples of engineered combined journal and thrust tilting pad bearings

Bearing Repair, Service and Upgrade

Damage to bearings generally results in machine failure and thus in costly downtimes. This is why Miba has expanded the area of bearing repair, in addition to the specialization in the development and manufacturing of new bearings. We help customers to increase efficiency and lower costs by upgrading or reengineering old bearings.

Starting with an evaluation of the existing bearing, we can recommend the best solution and realize the repair of your bearing. Please contact us for information and consultation.

Our services:

- Bearing failure analysis
- Bearing design optimization

.....

- Bearing repair
- Reverse engineering
- Training
- On-site service

Instrumentation

The most common bearing instrumentation is one or two single or double RTDs (PT100), according to the drawings below.

Depending on customers' needs, Miba Industrial Bearings offer a wide range of alternatives, including product offerings from several suppliers, various sensor dimensions (cable length, sensor diameter), different types of thermocouples, etc. Numerous certificates (e.g. ATEX) are available upon request.

Simulation & Analysis

With available professional software we are able to simulate the bearing operation and visualize the flow, deformation or stress behavior. Therefore, we can analyze and further develop our product design. These tools are an indispensable addition to our test stands to guarantee you the best technical solution.

Tilting Pad Temperature

Tilting Pad Temperature

Tilting Pad Pressure

Tilting Pad Temperature Pressure

Test Stands

Since 2013, two bearing test benches for radial bearings have been in heavy use for conducting experiments and trial series to improve performance, efficiency and operational safety.

With regard to bearing performance, the test rigs allow investigations in a wide operating range at circumferential speeds between approx. 10 m/s and up to 140 m/s and specific loads between 0 MPa and approx. 10 MPa (limited by the bearings' load carrying capacity and depending, among other things, on the bearing width).

www.miba.com

North America 3 sites

Europe 1 site

South America 1 site

Contacts:

Germany

Miba Industrial Bearings Germany Osterode GmbH Rolandsweg 16-20 37520 Osterode, Germany MIBG_sales@miba.com

USA

Miba Industrial Bearings U.S. LLC 1111 Cedar Creek Rd, Grafton, WI 53024, USA MIBUSG_Sales@miba.com

USA

Miba Industrial Bearings U.S. LLC 3300 E 8th St. Columbus, NE 68601, USA MIBUSG_Sales@miba.com

USA

Miba Industrial Bearings U.S. (Houston) LLC 1800 W 13th St, Deer Park, TX 77536, USA Houston.Sales@miba.com

• Miba Industrial Bearings

Brazil

Miba Industrial Bearings Brasil Ltda Av. Manoel Inácio Peixoto, 2147 36.771-000 Cataguases, Brazil Vendas.MIBCAT@MIBA.COM